4.7 Article

Lack of Evidence for Vesicular Glutamate Transporter Expression in Mouse Astrocytes

Journal

JOURNAL OF NEUROSCIENCE
Volume 33, Issue 10, Pages 4434-4455

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3667-12.2013

Keywords

-

Categories

Funding

  1. Agence Nationale de la Recherche [P3N 09-044-02, Optoglia R12009KK, PSYVGLUT 09-MNPS-033]
  2. European Union [FP6-STRP-2006-037897]
  3. French Research Ministry

Ask authors/readers for more resources

The concept of a tripartite synapse including a presynaptic terminal, a postsynaptic spine, and an astrocytic process that responds to neuronal activity by fast gliotransmitter release, confers to the electrically silent astrocytes an active role in information processing. However, the mechanisms of gliotransmitter release are still highly controversial. The reported expression of all three vesicular glutamatetransporters(VGLUT1-3) by astrocytes suggests that astrocytes, like neurons, may release glutamate by exocytosis. However, the demonstration of astrocytic VGLUT expression is largely based on immunostaining, and the possibility of nonspecific labeling needs to be systematically addressed. We therefore examined the expression of VGLUT1-3 in astrocytes, both in culture and in situ. We used Western blots and single-vesicle imaging by total internal reflection fluorescence microscopy in live cultured astrocytes, and confocal microscopy, at the cellular level in cortical, hippocampal, and cerebellar brain slices, combined with quantitative image analysis. Control experiments were systematically performed in cultured astrocytes using wild-type, VGLUT1-3 knock-out, VGLUT1(Venus) knock-in, and VGLUT2-EGFP transgenic mice. In fixed brain slices, we quantified the degree of overlap between VGLUT1-3 and neuronal or astrocytic markers, both in an object-based manner using fluorescence line profiles, and in a pixel-based manner using dual-color scatter plots followed by the calculation of Pearson's correlation coefficient over all pixels with intensities significantly different from background. Our data provide no evidence in favor of the expression of any of the three VGLUTs by gray matter protoplasmic astrocytes of the primary somatosensory cortex, the thalamic ventrobasal nucleus, the hippocampus, and the cerebellum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available