4.7 Article

Axonal GABAA Receptors Increase Cerebellar Granule Cell Excitability and Synaptic Activity

Journal

JOURNAL OF NEUROSCIENCE
Volume 31, Issue 2, Pages 565-574

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4506-10.2011

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [NS066037, NS007381]

Ask authors/readers for more resources

We report that activation of GABA(A) receptors on cerebellar granule cell axons modulates both transmitter release and the excitability of the axon and soma. Axonal GABA(A) receptors depolarize the axon, increasing its excitability and causing calcium influx at axonal varicosities. GABA-mediated subthreshold depolarizations in the axon spread electrotonically to the soma, promoting orthodromic action potential initiation. When chloride concentrations are unperturbed, GABA iontophoresis elicits spikes and increases excitability of parallel fibers, indicating that GABA(A) receptor-mediated responses are normally depolarizing. GABA release from molecular layer interneurons activates parallel fiber GABA(A) receptors, and this, in turn, increases release probability at synapses between parallel fibers and molecular layer interneurons. These results describe a positive feedback mechanism whereby transmission from granule cells to Purkinje cells and molecular layer interneurons will be strengthened during granule cell spike bursts evoked by sensory stimulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available