4.7 Article

Regulator of G-Protein Signaling-10 Negatively Regulates NF-κB in Microglia and Neuroprotects Dopaminergic Neurons in Hemiparkinsonian Rats

Journal

JOURNAL OF NEUROSCIENCE
Volume 31, Issue 33, Pages 11879-11888

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1002-11.2011

Keywords

-

Categories

Funding

  1. Michael J. Fox Foundation for Parkinson's Research
  2. Emory University Parkinson's Disease Collaborative Environmental Research Center
  3. NINDS at the National Institutes of Health [R01NS072467-01]

Ask authors/readers for more resources

Microglia are the brain-resident macrophages responsible for immune surveillance that become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Previous work from our group demonstrated that mice deficient in Regulator of G-protein Signaling 10 (RGS10), a microglia-enriched GTPase activating protein (GAP) for G-protein alpha subunits, displayed increased microglial burden in the CNS at birth and developed a parkinsonian phenotype after exposure to chronic systemic inflammation, implicating a neuroprotective role for RGS10 in the nigrostriatal pathway. While it is known that RGS10 is expressed in both microglia and certain subsets of neurons, it is not known whether RGS10 functions similarly in both cells types. In this study we sought to delineate the specific role of RGS10 in microglia and identify the molecular pathway(s) required for RGS10 to exert its actions in microglia. Here, we identify RGS10 as a negative regulator of the nuclear factor kappa B(NF-kappa B) pathway in microglia and demonstrate that the proinflammatory and cytotoxic phenotype of Rgs10-null microglia can be reversed by lentiviral-mediated restoration of RGS10 expression. In vivo gene transfer of RGS10 into the substantia nigra pars compacta (SNpc) of rats reduced microgliosis and protected against 6-OHDA neurotoxin-induced death of dopaminergic (DA) neurons. Together, our findings suggest that modulation of RGS10 activity in microglia may afford therapeutic benefit in the treatment of chronic neuroinflammatory conditions as well as neuroprotection against inflammation-related degeneration in Parkinson's disease (PD), the second most common neurodegenerative disorder affecting individuals over age 65.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available