4.7 Article

Single-Channel and Structural Foundations of Neuronal α7 Acetylcholine Receptor Potentiation

Journal

JOURNAL OF NEUROSCIENCE
Volume 31, Issue 39, Pages 13870-13879

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2652-11.2011

Keywords

-

Categories

Funding

  1. National Institutes of Health [NS053521, NS031744]
  2. Canadian Institutes of Health Research

Ask authors/readers for more resources

Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal alpha 7 acetylcholine receptor in the presence of the alpha 7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the submillisecond alpha 7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multisecond-long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available