4.7 Article

Homeostatic Strengthening of Inhibitory Synapses Is Mediated by the Accumulation of GABAA Receptors

Journal

JOURNAL OF NEUROSCIENCE
Volume 31, Issue 48, Pages 17701-17712

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4476-11.2011

Keywords

-

Categories

Funding

  1. National Institutes of Health [RO1 NS 040337, RO1 NS 044370, UO1 NS 58204]

Ask authors/readers for more resources

Mechanisms of homeostatic plasticity scale synaptic strength according to changes in overall activity to maintain stability in neuronal network function. This study investigated mechanisms of GABAergic homeostatic plasticity. Cultured neurons exposed to depolarizing conditions reacted with an increased firing rate (high activity, HA) that normalized to control levels after 48 h of treatment. HA-treated hippocampal neurons displayed an attenuated response to further changes in depolarization, and the firing rate in HA-treated neurons increased above normalized levels when inhibition was partially reduced back to the level of control neurons. The amplitude and frequency of mIPSCs in hippocampal neurons increased after 48 h of HA, and increases in the size of GABA(A) receptor gamma 2 subunit clusters and presynaptic GAD-65 puncta were observed. Investigation of the time course of inhibitory homeostasis suggested that accumulation of GABA(A) receptors preceded presynaptic increases in GAD-65 puncta size. Interestingly, the size of GABA(A) receptor gamma 2 subunit clusters that colocalized with GAD-65 were larger at 12 h, coinciding in time with the increase found in mIPSC amplitude. The rate of internalization of GABAA receptors, a process involved in regulating the surface expression of inhibitory receptors, was slower in HA-treated neurons. These data also suggest that increased receptor expression was consolidated with presynaptic changes. HA induced an increase in postsynaptic GABA(A) receptors through a decrease in the rate of internalization, leading to larger synaptically localized receptor clusters that increased GABAergic synaptic strength and contributed to the homeostatic stabilization of neuronal firing rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available