4.7 Article

BDNF-Induced Increase of PSD-95 in Dendritic Spines Requires Dynamic Microtubule Invasions

Journal

JOURNAL OF NEUROSCIENCE
Volume 31, Issue 43, Pages 15597-15603

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2445-11.2011

Keywords

-

Categories

Funding

  1. NIH [R01-NS064014]
  2. Dana Foundation
  3. Whitehall Foundation

Ask authors/readers for more resources

Microtubules (MTs) are capable of entering dendritic spines in mature hippocampal neurons through dynamic polymerization. Although these MT invasions are directly associated with neuronal activity, their function remains unknown. Here we demonstrate in mouse hippocampal neurons that MT entries into spines regulate the increase in postsynaptic density-95 (PSD-95) protein after brain-derived neurotrophic factor (BDNF) treatment. Using multiwavelength total internal reflectance fluorescence microscopy, we show that BDNF prolonged the average MT dwell time in spines and that this effect was dependent on TrkB receptor activation. Further examination revealed that peaks of MT polymerization into spines corresponded to rapid PSD-95 increases in the spine head. Over time, spines targeted by MTs after BDNF application, but not before, showed a robust increase in PSD-95. Conversely, spines completely devoid of MT invasions showed no significant change in the level of PSD-95. Pharmacological inhibition of MT dynamics abolished the BDNF-induced increase in PSD-95. Together, these results support the hypothesis that the well known increase in PSD-95 within spines after BDNF treatment is dependent on MT invasions of dendritic spines. Thus, our study provides a direct link between dynamic MTs and the postsynaptic structure, and provides a functional role for MT invasion of dendritic spines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available