4.7 Article

Synaptic Acidification Enhances GABAA Signaling

Journal

JOURNAL OF NEUROSCIENCE
Volume 30, Issue 47, Pages 16044-16052

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.6364-09.2010

Keywords

-

Categories

Funding

  1. National Institutes of Health [R01HL016152, T32NS041218]

Ask authors/readers for more resources

To determine the role of cellularly generated protons in synaptic signaling, we recorded GABA miniature IPSCs (mIPSCs) from cultured rat cerebellar granule cells (CGCs) while varying the extracellular pH buffering capacity. Consistent with previous reports, we found that increasing pH from 7.4 to 8.0 sped mIPSC rise time and suppressed both amplitude of the current and total charge transferred. Conversely, acidification (from pH 7.4 to 6.8) slowed the rise time and increased current amplitude and total charge transferred. In a manner consistent with alkalinization, increasing the buffering capacity from 3 to 24 mM HEPES at pH 7.4 resulted in faster mIPSC rise time, a 37% reduction in amplitude, and a 48% reduction in charge transferred. Supplementing the normal physiological buffers (24 mM HCO3-/5%CO2) with 10 mM HEPES similarly diminished mIPSCs in a manner consistent with alkalinization, resulting in faster rise time, a 39% reduction in amplitude, and a 51% reduction in charge transferred. These findings suggest the existence of an acidifying synaptic force that is overcome by commonly used concentrations (10 mM) of HEPES buffer. Here we show that Na+/H+ exchanger (NHE) activity appears to, in part, contribute to this synaptic acidification because inhibition of NHE by amiloride or lithium under physiological or weak buffering conditions alters mIPSCs in a manner consistent with alkalinization. These results suggest that acidification of the synaptic cleft occurs physiologically during GABAergic transmission and that NHE plays a critical role in generating the acidic nano-environment at the synapse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available