4.7 Article

Kisspeptin Directly Excites Anorexigenic Proopiomelanocortin Neurons but Inhibits Orexigenic Neuropeptide Y Cells by an Indirect Synaptic Mechanism

Journal

JOURNAL OF NEUROSCIENCE
Volume 30, Issue 30, Pages 10205-10219

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2098-10.2010

Keywords

-

Categories

Funding

  1. National Institutes of Health [NS48476, NS34887, NS41454]

Ask authors/readers for more resources

The neuropeptide kisspeptin is necessary for reproduction, fertility, and puberty. Here, we show strong kisspeptin innervation of hypothalamic anorexigenic proopiomelanocortin (POMC) cells, coupled with a robust direct excitatory response by POMC neurons (n > 200) to kisspeptin, mediated by mechanisms based on activation of a sodium/calcium exchanger and possibly opening of nonselective cation channels. The excitatory actions of kisspeptin on POMC cells were corroborated with quantitative PCR data showing kisspeptin receptor GPR54 expression in the arcuate nucleus, and the attenuation of excitation by the selective kisspeptin receptor antagonist, peptide 234. In contrast, kisspeptin inhibits orexigenic neuropeptide Y (NPY) neurons through an indirect mechanism based on enhancing GABA-mediated inhibitory synaptic tone. In striking contrast, gonadotropin-inhibiting hormone (GnIH and RFRP-3) and NPY, also found in axons abutting POMC cells, inhibit POMC cells and attenuate the kisspeptin excitation by a mechanism based on opening potassium channels. Together, these data suggest that the two central peptides that regulate reproduction, kisspeptin and GnIH, exert a strong direct action on POMC neurons. POMC cells may hypothetically serve as a conditional relay station downstream of kisspeptin and GnIH to signal the availability of energy resources relevant to reproduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available