4.6 Article

Phase field based nonlocal anisotropic damage mechanics model

Journal

PHYSICA D-NONLINEAR PHENOMENA
Volume 308, Issue -, Pages 11-25

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physd.2015.06.003

Keywords

Allen-Cahn equation; Phase field; Nonlocal; Gradient model; Anisotropic damage

Ask authors/readers for more resources

A nonlocal anisotropic damage theory is developed in this work through the phase field method to address the anisotropic damage evolution in materials. The anisotropic damage is discussed and appropriate nonconserved order parameters in three mutually perpendicular directions are defined to find the growth of the components of a second order diagonal damage tensor corresponding to the principal directions of a general second order damage tensor. In contrast to the previous models, two new tensors are proposed to act as interpolation and potential functions along with the Allen-Cahn equation in order to obtain the evolution of the order parameters, which is the basis of the definition of the damage rate. The tensor formulation of the growth of the components of the damage tensor is proposed for the first time. It is shown that, by introducing a set of material parameters including a length scale parameter due to damage, there is a robust and simplified way to model the nonlocal behavior of damage and predict the corresponding material behavior as components of a second order diagonal damage tensor. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available