4.7 Article

LRRK2 Kinase Regulates Synaptic Morphology through Distinct Substrates at the Presynaptic and Postsynaptic Compartments of the Drosophila Neuromuscular Junction

Journal

JOURNAL OF NEUROSCIENCE
Volume 30, Issue 50, Pages 16959-16969

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1807-10.2010

Keywords

-

Categories

Funding

  1. Alzheimer's Association [IIRG0626723]
  2. National Institutes of Health [R01AR054926, R01MH080378]
  3. Taiwan Department of Health Clinical Trial and Research Center of Excellence [DOH99-TD-B-111-004]

Ask authors/readers for more resources

Mutations in leucine-rich repeat kinase 2 (LRRK2) are linked to familial as well as sporadic forms of Parkinson's disease (PD), a neurodegenerative disease characterized by dysfunction and degeneration of dopaminergic and other types of neurons. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Here, we show that LRRK2 controls synaptic morphogenesis at the Drosophila neuromuscular junction. Loss of Drosophila LRRK2 results in synaptic overgrowth, whereas overexpression of Drosophila LRRK or human LRRK2 has opposite effects. Alteration of LRRK2 activity also affects neurotransmission. LRRK2 exerts its effects on synaptic morphology by interacting with distinct downstream effectors at the presynaptic and postsynaptic compartments. At the postsynapse, LRRK2 interacts with the previously characterized substrate 4E-BP, an inhibitor of protein synthesis. At the presynapse, LRRK2 phosphorylates and negatively regulates the microtubule (MT)-binding protein Futsch. These results implicate synaptic dysfunction caused by deregulated protein synthesis and aberrant MT dynamics in LRRK2 pathogenesis and offer a new paradigm for understanding and ultimately treating PD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available