4.7 Article

Direction Discrimination Thresholds of Vestibular and Cerebellar Nuclei Neurons

Journal

JOURNAL OF NEUROSCIENCE
Volume 30, Issue 2, Pages 439-448

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3192-09.2010

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [EY12814, DC04260, EY016178]

Ask authors/readers for more resources

To understand the roles of the vestibular system in perceptual detection and discrimination of self-motion, it is critical to account for response variability in computing the sensitivity of vestibular neurons. Here we study responses of neurons with no eye movement sensitivity in the vestibular (VN) and rostral fastigial nuclei (FN) using high-frequency (2 Hz) oscillatory translational motion stimuli. The axis of translation (i.e., heading) varied slowly (1 degrees/s) in the horizontal plane as the animal was translated back and forth. Signal detection theory was used to compute the threshold sensitivity of VN/FN neurons for discriminating small variations in heading around all possible directions of translation. Across the population, minimum heading discrimination thresholds averaged 16.6 degrees +/- 1 SE for FN neurons and 15.3 degrees +/- 2.2 degrees SE for VN neurons, severalfold larger than perceptual thresholds for heading discrimination. In line with previous studies and theoretical predictions, maximum discriminability was observed for directions where firing rate changed steeply as a function of heading, which occurs at headings approximately perpendicular to the maximum response direction. Forward/backward heading thresholds tended to be lower than lateral motion thresholds, and the ratio of lateral over forward heading thresholds averaged 2.2 +/- 6.1 (geometric mean +/- SD) for FN neurons and 1.1 +/- 4.4 for VN neurons. Our findings suggest that substantial pooling and/or selective decoding of vestibular signals from the vestibular and deep cerebellar nuclei may be important components of further processing. Such a characterization of neural sensitivity is critical for understanding how early stages of vestibular processing limit behavioral performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available