4.7 Article

Diacylglycerol Lipase Is Not Involved in Depolarization-Induced Suppression of Inhibition at Unitary Inhibitory Connections in Mouse Hippocampus

Journal

JOURNAL OF NEUROSCIENCE
Volume 30, Issue 7, Pages 2710-2715

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.BC-3622-09.2010

Keywords

-

Categories

Funding

  1. NeuroBsik
  2. NWO
  3. VU University board

Ask authors/readers for more resources

Endocannabinoids control hippocampal inhibitory synaptic transmission through activation of presynaptic CB1 receptors. During depolarization-induced suppression of inhibition (DSI), endocannabinoids are synthesized upon postsynaptic depolarization. The endocannabinoid 2-arachidonoylglycerol (2-AG) may mediate hippocampal DSI. Currently, the best studied pathway for biosynthesis of 2-AG involves the enzyme diacylglycerol lipase (DAGL). However, whether DAGL is necessary for hippocampal DSI is controversial and was not systematically addressed. Here, we investigate DSI at unitary connections between CB1 receptor-containing interneurons and pyramidal neurons in CA1. We found that the novel DAGL inhibitor OMDM-188, as well as the established inhibitor RHC-80267, did not affect DSI. As reported previously, effects of the DAGL inhibitor tetrahydrolipstatin depended on the application method: postsynaptic intracellular application left DSI intact, while incubation blocked DSI. We show that all DAGL inhibitors tested block slow self-inhibition in neocortical interneurons, which involves DAGL. We conclude that DAGL is not involved in DSI at unitary connections in hippocampus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available