4.7 Review

Inhibition of Adult Rat Retinal Ganglion Cells by D1-Type Dopamine Receptor Activation

Journal

JOURNAL OF NEUROSCIENCE
Volume 29, Issue 47, Pages 15001-15016

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3827-09.2009

Keywords

-

Categories

Funding

  1. National Institutes of Health [EY08120]
  2. National Eye Institute Core [P30 EY12576]
  3. Plum Foundation
  4. Research to Prevent Blindness, Inc. (New York, NY)
  5. Spanish Ministry of Education and Science [EX2005-0745 (BOE14-10-2004)]

Ask authors/readers for more resources

The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D-1a receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D-1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D-1-type receptors, SCH-23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking I-h. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (I-Na) amplitude, and tetrodotoxin, at doses that reduced I-Na as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D-1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the presynaptic and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available