4.7 Article

Dynorphin Opioid Peptides Enhance Acid-Sensing Ion Channel 1a Activity and Acidosis-Induced Neuronal Death

Journal

JOURNAL OF NEUROSCIENCE
Volume 29, Issue 45, Pages 14371-14380

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2186-09.2009

Keywords

-

Categories

Funding

  1. American Heart Association
  2. National Institutes of Health [RO1]
  3. American Heart Predoctoral Student Fellowship

Ask authors/readers for more resources

Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a activity is independent of opioid or bradykinin receptor activation but is prevented in the presence of PcTx1, a peptide which is known to bind the extracellular domain of ASIC1a. This suggests that dynorphins interact directly with ASIC1a to enhance channel activity. Inducing steady-state desensitization prevents ASIC1a-mediated cell death during prolonged acidosis. This neuroprotection is abolished in the presence of dynorphins. Together, these results define ASIC1a as a new nonopioid target for dynorphin action and suggest that dynorphins enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available