4.7 Article

Activation of TRPV1 Mediates Calcitonin Gene-Related Peptide Release, Which Excites Trigeminal Sensory Neurons and Is Attenuated by a Retargeted Botulinum Toxin with Anti-Nociceptive Potential

Journal

JOURNAL OF NEUROSCIENCE
Volume 29, Issue 15, Pages 4981-4992

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5490-08.2009

Keywords

-

Categories

Funding

  1. Science Foundation Ireland (SFI)
  2. Irish Higher Education Authority for Target-driven therapeutics and theranostics.
  3. SFI [03/IN3/B403C]
  4. Science Foundation Ireland (SFI) [03/IN3/B403C] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Excessive release of inflammatory/pain mediators from peripheral sensory afferents renders nerve endings hyper-responsive, causing central sensitization and chronic pain. Herein, the basal release of proinflammatory calcitonin gene-related peptide (CGRP) was shown to increase the excitability of trigeminal sensory neurons in brainstem slices via CGRP1 receptors because the effect was negated by an antagonist, CGRP8-37. This excitatory action could be prevented by cleaving synaptosomal-associated protein of M(r)25,000 (SNAP-25) with botulinum neurotoxin (BoNT) type A, a potent inhibitor of exocytosis. Strikingly, BoNT/A proved unable to abolish the CGRP1 receptor-mediated effect of capsaicin, a nociceptive TRPV1 stimulant, or its elevation of CGRP release from trigeminal ganglionic neurons (TGNs) in culture. Although the latter was also not susceptible to BoNT/E, apparently attributable to a paucity of its acceptors (glycosylated synaptic vesicle protein 2 A/B), this was overcome by using a recombinant chimera (EA) of BoNT/A and BoNT/ E. It bound effectively to the C isoform of SV2 abundantly expressed in TGNs and cleaved SNAP-25, indicating that its /A binding domain (H-C) mediated uptake of the active /E protease. The efficacy of /EA is attributable to removal of 26 C-terminal residues from SNAP-25, precluding formation of SDS-resistant SNARE complexes. In contrast, exocytosis could be evoked after deleting nine of the SNAP-25 residues with /A but only on prolonged elevation of [ Ca2+](i) with capsaicin. This successful targeting of /EA to nociceptive neurons and inhibition of CGRP release in vitro and in situ highlight its potential as a new therapy for sensory dysmodulation and chronic pain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available