4.7 Article

Phosphorylation of Prion Protein at Serine 43 Induces Prion Protein Conformational Change

Journal

JOURNAL OF NEUROSCIENCE
Volume 29, Issue 27, Pages 8743-8751

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2294-09.2009

Keywords

-

Categories

Funding

  1. National Institutes of Health [1RO1 NS40431]
  2. Canadian Institutes for Health Research [MOP-49594]
  3. Fonds de Recherche en Sante du Quebec
  4. Public Health Agency of Canada
  5. Canadian Biotechnology Strategy Fund

Ask authors/readers for more resources

The cause of the conformational change of normal cellular prion protein (PrP) into its disease-associated form is unknown. Posttranslational modifications, such as glycosylation, acetylation, S-nitrosylation, and phosphorylation, are known to induce protein conformational changes. Here, we investigated whether phosphorylation could induce the conformational change of PrP because PrP contains several kinase motifs and has been found recently in the cytosol, in which kinases generally reside. Neuronal cyclin-dependent kinase 5 (Cdk5) phosphorylated recombinant PrP23-231 at serine 43 (S43) in an in vitro kinase assay. Cdk5-phosphorylated PrP became proteinase K resistant, formed Congo Red-positive fibrils, and formed aggregates that were immunostained with anti-PrP and anti-phospho-PrPS43 (anti-pPrP(S43)). pPrP(S43) was detected in PrP/Cdk5/p25 cotransfected N2a cells. Roscovitine inhibition of Cdk5 activity or transfection of N2a cells with mutant PrP S43A eliminated the anti-pPrP(S43)-immunopositive protein. Alkaline phosphatase-sensitive and proteinase K-resistant pPrP(S43) immunoreactivity was observed in scrapie-infected but not control-injected mice brains. These results raise the possibility that phosphorylation could represent a physiological mechanism of PrP conversion in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available