4.7 Article

Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I

Journal

JOURNAL OF NEUROSCIENCE
Volume 28, Issue 23, Pages 6000-6009

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0384-08.2008

Keywords

AMPA receptor; CaM-kinase; LTP; calcium; hippocampus; synaptic plasticity

Categories

Funding

  1. NINDS NIH HHS [R01 NS027037, R01 NS027037-18, R01 NS027037-19, R01 NS27037] Funding Source: Medline

Ask authors/readers for more resources

Ca(2+)-permeable AMPA receptors (CP-AMPARs) at central glutamatergic synapses are of special interest because of their unique biophysical and signaling properties that contribute to synaptic plasticity and their roles in multiple neuropathologies. However, intracellular signaling pathways that recruit synaptic CP-AMPARs are unknown, and involvement of CP-AMPARs in hippocampal region CA1 synaptic plasticity is controversial. Here, we report that intracellular infusion of active CaM-kinase I (CaMKI) into cultured hippocampal neurons enhances miniature EPSC amplitude because of recruitment of CP-AMPARs, likely from an extrasynaptic pool. The ability of CaMKI, which regulates the actin cytoskeleton, to recruit synaptic CP-AMPARs was blocked by inhibiting actin polymerization with latrunculin A. CaMK regulation of CP-AMPARs was also confirmed in hippocampal slices. CA1 long-term potentiation (LTP) after theta bursts, but not high-frequency tetani, produced a rapid, transient expression of synaptic CP-AMPARs that facilitated LTP. This component of TBS LTP was blocked by inhibition of CaM-kinase kinase (CaMKK), the upstream activator of CaMKI. Our calculations show that adding CP-AMPARs numbering <5% of existing synaptic AMPARs is sufficient to account for the potentiation observed in LTP. Thus, synaptic expression of CP-AMPARs is a very efficient mechanism for rapid enhancement of synaptic strength that depends on CaMKK/CaMKI signaling, actin dynamics, and the pattern of synaptic activity used to induce CA1 LTP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available