4.7 Article

A mechanism distinct from highwire for the Drosophila ubiquitin conjugase bendless in synaptic growth and maturation

Journal

JOURNAL OF NEUROSCIENCE
Volume 28, Issue 34, Pages 8615-8623

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2990-08.2008

Keywords

giant fiber; Drosophila; synapse formation; ubiquitin; growth; maturation

Categories

Funding

  1. National Institutes of Health (NIH) [R01-NS044609, R01 HD050725-01A1]

Ask authors/readers for more resources

The signaling mechanisms that allow the conversion of a growth cone into a mature and stable synapse are yet to be completely understood. Ubiquitination plays key regulatory roles in synaptic development and may be involved in this process. Previous studies identified the Drosophila ubiquitin conjugase bendless (ben) to be important for central synapse formation, but the precise role it plays has not been elucidated. Our studies indicate that Ben plays a pivotal role in synaptic growth and maturation. We have determined that an incipient synapse is present with a high penetrance in ben mutants, suggesting that Ben is required for a developmental step after target recognition. We used cell-autonomous rescue experiments to show that Ben has a presynaptic role in synapse growth. We then harnessed the TARGET system to transiently express UAS (upstream activating sequence)-ben in a ben mutant background and identified a well defined critical period for Ben function in establishing a full-grown, mature synaptic terminal. We demonstrate that the protein must be present at a time point before but not during the actual growth process. We also provide phenotypic evidence demonstrating that Ben is not a part of the signal transduction pathway involving the well characterized ubiquitin ligase highwire. We conclude that Bendless functions as a novel developmental switch that permits the transition from axonal growth and incipient synapse formation to synaptic growth and maturation in the CNS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available