4.4 Article

Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 109, Issue 5, Pages 1391-1402

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00176.2012

Keywords

LTP; calcium; GluN2B; GluN2A; memory; CaMKII

Funding

  1. National Health and Medical Research Council of Australia
  2. Australian Research Council
  3. Queensland Smart State Fellowship

Ask authors/readers for more resources

Delaney AJ, Sedlak PL, Autuori E, Power JM, Sah P. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits. J Neurophysiol 109: 1391-1402, 2013. First published December 5, 2012; doi: 10.1152/jn.00176.2012.-N-methyl-D-aspartate (NMDA) receptors are heteromultimeric ion channels that contain an essential GluN1 subunit and two or more GluN2 (GluN2A-GluN2D) subunits. The biophysical properties and physiological roles of synaptic NMDA receptors are dependent on their subunit composition. In the basolateral amygdala (BLA), it has been suggested that the plasticity that underlies fear learning requires activation of heterodimeric receptors composed of GluN1/GluN2B subunits. In this study, we investigated the subunit composition of NMDA receptors present at synapses on principal neurons in the BLA. Purification of the synaptic fraction showed that both GluN2A and GluN2B subunits are present at synapses, and co-immunoprecipitation revealed the presence of receptors containing both GluN2A and GluN2B subunits. The kinetics of NMDA receptor-mediated synaptic currents and pharmacological blockade indicate that heterodimeric GluN1/GluN2B receptors are unlikely to be present at glutamatergic synapses on BLA principal neurons. Selective RNA interference-mediated knockdown of GluN2A subunits converted synaptic receptors to a GluN1/GluN2B phenotype, whereas knockdown of GluN2B subunits had no effect on the kinetics of the synaptically evoked NMDA current. Blockade of GluN1/GluN2B heterodimers with ifenprodil had no effect, but knockdown of GluN2B disrupted the induction of CaMKII-dependent long-term potentiation at these synapses. These results suggest that, on BLA principal neurons, GluN2B subunits are only present as GluN1/GluN2A/GluN2B heterotrimeric NMDA receptors. The GluN2B subunit has little impact on the kinetics of the receptor, but is essential for the recruitment of signaling molecules essential for synaptic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available