4.4 Article

Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 109, Issue 3, Pages 839-850

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00381.2012

Keywords

anesthesia; skin sensory; microneurography

Funding

  1. Natural Science and Engineering Research Council of Canada
  2. Natural Science and Engineering Research Council of Canada Discovery Grant

Ask authors/readers for more resources

Lowrey CR, Strzalkowski ND, Bent LR. Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole. J Neurophysiol 109: 839-850, 2013. First published November 14, 2012; doi:10.1152/jn.00381.2012.-Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2-20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type (P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2-5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding on-off events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available