4.4 Article

Smooth changes in the EMG patterns during gait transitions under body weight unloading

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 106, Issue 3, Pages 1525-1536

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00160.2011

Keywords

electromyographic patterns; central pattern generator; gravity; human locomotion

Funding

  1. Italian Health Ministry
  2. Italian University Ministry
  3. Italian Space Agency
  4. European Union [247959, 248311]

Ask authors/readers for more resources

Sylos Labini F, Ivanenko YP, Cappellini G, Gravano S, Lacquaniti F. Smooth changes in the EMG patterns during gait transitions under body weight unloading. J Neurophysiol 106: 1525-1536, 2011. First published June 22, 2011; doi: 10.1152/jn.00160.2011.-During gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed, and it has been suggested that different gaits may be associated with different functioning of neuronal networks. In this study we recorded the EMG activity of leg muscles at slow increments and decrements in treadmill belt speed and at different levels of body weight unloading. In contrast to normal walking at 1 g, at lower levels of simulated gravity (< 0.4 g) the transition between walking and running was generally gradual, without systematic abrupt changes in either intensity or timing of EMG patterns. This phenomenon depended to a limited extent on the gravity simulation technique, although the exact level of the appearance of smooth transitions (0.4-0.6 g) tended to be lower for the vertical than for the tilted body weight support system. Furthermore, simulations performed with a half-center oscillator neuromechanical model showed that the abruptness of motor patterns at gait transitions at 1 g could be predicted from the distinct parameters anchored already in the normal range of walking and running speeds, whereas at low gravity levels the parameters of the model were similar for the two human gaits. A lack of discontinuous changes in the pattern of speed-dependent locomotor characteristics in a hypogravity environment is consistent with the idea of a continuous shift in the state of a given set of central pattern generators, rather than the activation of a separate set of central pattern generators for each distinct gait.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available