4.4 Article

Facilitation of Postural Limb Reflexes With Epidural Stimulation in Spinal Rabbits

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 103, Issue 2, Pages 1080-1092

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00575.2009

Keywords

-

Funding

  1. National Institute of Neurological Disorders and Stroke [R01 NS-049884]
  2. Swedish Research Council (Karolinska Institutet) [11554, 21076]

Ask authors/readers for more resources

Musienko PE, Zelenin PV, Orlovsky GN, Deliagina TG. Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits. J Neurophysiol 103: 1080-1092, 2010. First published December 16, 2009; doi:10.1152/jn.00575.2009. It is known that after spinalization animals lose their ability to maintain lateral stability when standing or walking. A likely reason for this is a reduction of the postural limb reflexes (PLRs) driven by stretch and load receptors of the limbs. The aim of this study was to clarify whether spinal networks contribute to the generation of PLRs. For this purpose, first, PLRs were recorded in decerebrated rabbits before and after spinalization at T12. Second, the effects of epidural electrical stimulation (EES) at L7 on the limb reflexes were studied after spinalization. To evoke PLRs, the vertebrate column of the rabbit was fixed, whereas the hindlimbs were positioned on the platform. Periodic lateral tilts of the platform caused antiphase flexion-extension limbs movements, similar to those observed in intact animals keeping balance on the tilting platform. Before spinalization, these movements evoked PLRs: augmentation of extensor EMGs and increase of contact force during limb flexion, suggesting their stabilizing postural effects. Spinalization resulted in almost complete disappearance of PLRs. After EES, however, the PLRs reappeared and persisted for up to several minutes, although their values were reduced. The post-EES effects could be magnified by intrathecal application of quipazine (5-HT agonist) at L4-L6. Results of this study suggest that the spinal cord contains the neuronal networks underlying PLRs; they can contribute to the maintenance of lateral stability in intact subjects. In acute spinal animals, these networks can be activated by EES, suggesting that they are normally activated by a tonic supraspinal drive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available