4.4 Article

Tonotopic Gradient in the Developmental Acquisition of Sensory Transduction in Outer Hair Cells of the Mouse Cochlea

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 101, Issue 6, Pages 2961-2973

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00136.2009

Keywords

-

Funding

  1. National Institute of Deafness and Other Communications Disorders [DC-008853, DC05439]
  2. Hazel Thorpe Carmen and George Gay Carmen Trust for Scientific Research
  3. Deafness Research, UK
  4. Royal National Institute for Deaf People (RNID)
  5. Physik Instruments

Ask authors/readers for more resources

Lelli A, Asai Y, Forge A, Holt JR, Geleoc GS. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 101: 2961-2973, 2009. First published April 1, 2009; doi: 10.1152/jn.00136.2009. Inner ear hair cells are exquisite mechanosensors that transduce nanometer scale deflections of their sensory hair bundles into electrical signals. Several essential elements must be precisely assembled during development to confer the unique structure and function of the mechanotransduction apparatus. Here we investigated the functional development of the transduction complex in outer hair cells along the length of mouse cochlea acutely excised between embryonic day 17 (E17) and postnatal day 8 (P8). We charted development of the stereociliary bundle using scanning electron microscopy; FM1-43 uptake, which permeates hair cell transduction channels, mechanotransduction currents evoked by rapid hair bundle deflections, and mRNA expression of possible components of the transduction complex. We demonstrated that uptake of FM1-43 first occurred in the basal portion of the cochlea at P0 and progressed toward the apex over the subsequent week. Electrophysiological recordings obtained from 234 outer hair cells between E17 and P8 from four cochlear regions revealed a correlation between the pattern of FM1-43 uptake and the acquisition of mechanotransduction. We found a spatiotemporal gradient in the properties of transduction including onset, amplitude, operating range, time course, and extent of adaptation. We used quantitative RT-PCR to examine relative mRNA expression of several hair cell myosins and candidate tip-link molecules. We found spatiotemporal expression patterns for mRNA that encodes cadherin 23, protocadherin 15, myosins 3a, 7a, 15a, and PMCA2 that preceded the acquisition of transduction. The spatiotemporal expression patterns of myosin 1c and PMCA2 mRNA were correlated with developmental changes in several properties of mechanotransduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available