4.4 Article

Enhanced Calcium Buffering in F344 Rat Cholinergic Basal Forebrain Neurons Is Associated With Age-Related Cognitive Impairment

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 102, Issue 4, Pages 2194-2207

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00301.2009

Keywords

-

Funding

  1. National Institute on Aging [AG-007805]

Ask authors/readers for more resources

Murchison D, McDermott AN, LaSarge CL, Peebles KA, Bizon JL, Griffith WH. Enhanced calcium buffering in F344 rat cholinergic basal forebrain neurons is associated with age-related cognitive impairment. J Neurophysiol 102: 2194-2207, 2009. First published August 12, 2009; doi: 10.1152/jn.00301.2009. Alterations in neuronal Ca2+ homeostasis are important determinants of age-related cognitive impairment. We examined the Ca2+ influx, buffering, and electrophysiology of basal forebrain neurons in adult, middle-aged, and aged male F344 behaviorally assessed rats. Middle-aged and aged rats were characterized as cognitively impaired or unimpaired by water maze performance relative to young cohorts. Patch-clamp experiments were conducted on neurons acutely dissociated from medial septum/nucleus of the diagonal band with post hoc identification of phenotypic marker mRNA using single-cell RT-PCR. We measured whole cell calcium and barium currents and dissected these currents using pharmacological agents. We combined Ca2+ current recording with Ca2+-sensitive ratiometric microfluorimetry to measure Ca2+ buffering. Additionally, we sought changes in neuronal firing properties using current-clamp recording. There were no age-or cognitionrelated changes in the amplitudes or fractional compositions of the whole cell Ca2+ channel currents. However, Ca2+ buffering was significantly enhanced in cholinergic neurons from aged cognitively impaired rats. Moreover, increased Ca2+ buffering was present in middle-aged rats that were not cognitively impaired. Firing properties were largely unchanged with age or cognitive status, except for an increase in the slow afterhyperpolarization in aged cholinergic neurons, independent of cognitive status. Furthermore, acutely dissociated basal forebrain neurons in which choline acetyltransferase mRNA was detected had the electrophysiological profiles of identified cholinergic neurons. We conclude that enhanced Ca2+ buffering by cholinergic basal forebrain neurons may be important during aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available