4.4 Article

Functional Interaction Between TRPV1 and μ-Opioid Receptors in the Descending Antinociceptive Pathway Activates Glutamate Transmission and Induces Analgesia

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 101, Issue 5, Pages 2411-2422

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.91225.2008

Keywords

-

Funding

  1. Ministero Istruzione Universitae Ricerca, Italy
  2. Foundation for Polish Science and Iceland, Liechtenstein

Ask authors/readers for more resources

Maione S, Starowicz K, Cristino L, Guida F, Palazzo E, Luongo L, Rossi F, Marabese I, de Novellis V, Di Marzo V. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia. J Neurophysiol 101: 2411-2422, 2009. First published March 18, 2009; doi:10.1152/jn.91225.2008. The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal gray (VL-PAG) tonically contributes to brain stem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and OFF neuron activity. Because both opioid and vanilloid systems integrate and transduce pain sensation in these pathways, we studied the potential interaction between TRPV1 and mu-opioid receptors in the VL-PAG-rostral ventromedial medulla (RVM) system. We found that the TRPV1 agonist, capsaicin, and the mu-receptor agonist [ D-Ala(2), N-Me-Phe(4), Gly(5)-ol] enkephalin, when coadministered into the ventro-lateral-PAG at doses nonanalgesic per se, produce 1) antinociception in tests of thermal nociception; 2) stimulation of glutamate release into the RVM; and 3) inhibition of ON neuron activity in the RVM. These effects were all antagonized by the TRPV1 and opioid receptor antagonists 5'-iodo-resiniferatoxin and naloxone, respectively, thus suggesting the existence of a TRPV1-mu-opioid interaction in the VL-PAG-RVM system. By using double immunofluorescence techniques, we found that TRPV1 and mu-opioid receptors are coexpressed in several neurons of the VL-PAG. These findings suggest that mu-receptor activation not only acts on inhibitory neurons to disinhibit PAG output neurons but also interacts with TRPV1 activation at increasing glutamate release into the RVM, possibly by acting directly on PAG output neurons projecting to the RVM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available