4.4 Article

Effects of Temperature Acclimation on a Central Neural Circuit and Its Behavioral Output

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 100, Issue 6, Pages 2997-3008

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.91033.2008

Keywords

-

Funding

  1. Grass Foundation
  2. Marine Biological Laboratory Neuroscience Institute

Ask authors/readers for more resources

In this study, we address the impact of temperature acclimation on neuronal properties in the Mauthner (M-) system, a brain stem network that initiates the startle-escape behavior in goldfish. The M- cell can be studied at cellular and behavioral levels, since it is uniquely identifiable physiologically within the intact vertebrate brain, and a single action potential in this neuron determines not only whether a startle response will occur but also the direction of the escape. Using animals acclimated to 15 degrees C as a control, 25 degrees C-acclimated fish showed a significant increase in escape probability and a decrease in the ability to discriminate escape directionality. Intracellular recordings demonstrated that M- cells in this population possessed decreased input resistance and reduced strength and duration of inhibitory inputs. In contrast, fish acclimated to 5 degrees C were behaviorally similar to 15 degrees C fish and had increased input resistance, increased strength of inhibitory transmission, and reduced excitatory transmission. We show here that alterations in the balance between excitatory and inhibitory synaptic transmission in the M- cell circuit underlie differences in behavioral responsiveness in acclimated populations. Specifically, during warm acclimation, synaptic inputs are weighted on the side of excitation and fish demonstrate hyperexcitability and reduced left-right discrimination during rapid escapes. In contrast, cold acclimation results in transmission weighted on the side of inhibition and these fish are less excitable and show improved directional discrimination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available