4.3 Article

Electroporation as a Method to Induce Myofiber Regeneration and Increase the Engraftment of Myogenic Cells in Skeletal Muscles of Primates

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/NEN.0b013e31829bac22

Keywords

Electroporation; Myoblasts; Myogenic cell transplantation; Nonhuman primates; Skeletal muscle

Funding

  1. Jesse's Journey Foundation for Gene and Cell Therapy of Canada

Ask authors/readers for more resources

Engraftment of intramuscularly transplanted myogenic cells in mice can be optimized after induction of massive myofiber damage that triggers myofiber regeneration and recruitment of grafted cells; this generally involves either myotoxin injection or cryodamage. There are no effective methods to produce a similar process in the muscles of large mammals such as primates. In this study, we tested the use of intramuscular electroporation for this purpose in 11 macaques. The test sites were 1 cm(3) of skeletal muscle. Each site was treated with 3 penetrations of a 2-needle electrode with 1 cm spacing, applying 3 pulses of 400 V/cm, for a duration of 5 milliseconds and a delay of 200 milliseconds during each penetration. Transplantation of beta-galactosidase-labeled myoblasts was done in electroporated and nonelectroporated sites. Electroporation induced massive myofiber necrosis that was followed by efficient muscle regeneration. Myoblast engraftment was substantially increased in electroporated compared with nonelectroporated sites. This suggests that electroporation may be a useful tool to study muscle regeneration in primates and other large mammals and as a method for increasing the engraftment of myoblasts and other myogenic cells in intramuscular transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available