4.3 Article

Systemic Polyethylene Glycol Promotes Neurological Recovery and Tissue Sparing in Rats After Cervical Spinal Cord Injury

Journal

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1097/NEN.0b013e3181a72605

Keywords

Clip compression; Locomotor recovery; Neuroprotection; Polyethylene glycol; Retrograde labeling; Spinal cord injury

Funding

  1. Ontario Neurotrauma Foundation Proof of Principal Grant
  2. Canadian Institutes of Health Research Postdoctoral Fellowship
  3. Krembil Chair in Neural Repair and Regeneration

Ask authors/readers for more resources

Polyethylene glycol (PEG) has been reported to possess fusogenic properties that may confer neuroprotection after spinal cord injury (SCI), but there is uncertainty regarding the mechanisms of PEG in vivo and the robustness of its protective effects. We hypothesized that PEG promotes preservation of cytoskeletal proteins associated with white matter protection and neurobehavioral recovery after SCI. In proof-of-principle experiments using a pin-drop organotypic Culture model of SCI, PEG attenuated neural cell death. Adult rats underwent 35-g clip compression SCI at C8 and were randomized post-injury to receive intravenous 30% PEG or sterile Ringer's lactate Solution. Confocal microscopy and high-performance liquid chromatography of fluorescein-conjugated PEG permitted in vivo quantification of PEG concentrations in the injured and uninjured spinal cord. Western blot, immunohistochemistry, and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining demonstrated that PEG reduced 200-kd neurofilament degradation and apoptotic cell death. Polyethylene glycol also promoted spinal cord tissue sparing based oil retrograde axonal Fluoro-Gold tracing and morphometric histological assessment. Polyethylene glycol also promoted significant, although modest, neurobehavioral recovery after SCI. Collectively, these results indicate that PEG protects key axonal cytoskeletal proteins after SCI, and that the protection is associated with axonal preservation. The modest extent of locomotor recovery after treatment with PEG suggests, however. that this compound may]lot confer sufficient neuroprotection to be used clinically as a single treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available