4.6 Article

Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid

Journal

JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY
Volume 82, Issue 8, Pages 850-852

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jnnp.2009.200253

Keywords

-

Ask authors/readers for more resources

Background Spinal muscular atrophy (SMA) is caused by the homozygous deletion of the survival motor neuron (SMN)1 gene. The nearly identical SMN2 gene produces small amounts of full-length mRNA and functional SMN protein, due to a point mutation in a critical splicing site. Increasing SMN protein production by histone deacetylase inhibiting drugs such as valproic acid (VPA) is an experimental treatment strategy for SMA. Objective To investigate whether an SMN-specific ELISA could detect changes in SMN protein expression in peripheral blood mononuclear cells (PBMCs) after treatment with VPA. Methods The authors developed a sensitive SMN-specific ELISA. Six patients with SMA types 2 and 3 participated in the study. Recombinant SMN calibration curves were used to calculate SMN protein levels in PBMCs before and after 4 months of VPA treatment. Results The SMN ELISA was able to detect small differences in SMN protein concentrations, and differences in SMN protein levels in Epstein-Barr virus immortalised lymphocyte cell lines from SMA type 1 and 2 patients, carriers and healthy individuals (p<0.05). The mean SMN protein level in PBMCs from SMA patients was 22% (SD 15%) of the value in a healthy control. VPA treatment resulted in significantly increased SMN protein levels in five out of six SMA patients compared with baseline values (p<0.05), but did not restore SMN levels to normal values. Conclusions SMN protein quantification by this SMN ELISA is a useful additional tool for evaluating the effects of experimental treatment in SMA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available