4.7 Article

Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions

Journal

JOURNAL OF NEUROLOGY
Volume 255, Issue 8, Pages 1231-1235

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00415-008-0892-9

Keywords

Alzheimer's disease; neurodegeneration; mitochondrial DNA; deletions; Parkinson's disease; oxidative stress

Funding

  1. University of Munich
  2. German Federal Ministry of Education and Research [01G10505]
  3. Medical Research Council [G0700718] Funding Source: researchfish
  4. MRC [G0700718] Funding Source: UKRI

Ask authors/readers for more resources

Mitochondrial dysfunction is a consistent finding in neurodegenerative disorders like Alzheimer's (AD) or Parkinson's disease (PD) but also in normal human brain aging. In addition to respiratory chain defects, damage to mitochondrial DNA (mtDNA) has been repeatedly reported in brains from AD and PD patients. Most studies though failed to detect biologically significant point mutation or deletion levels in brain homogenate. By employing quantitative single cell techniques, we were recently able to show significantly high levels of mtDNA deletions in dopaminergic substantia nigra (SN) neurons from PD patients and age-matched controls. In the present study we used the same approach to quantify the levels of mtDNA deletions in single cells from three different brain regions (putamen, frontal cortex, SN) of patients with AD (n = 9) as compared to age-matched controls (n = 8). There were no significant differences between patients and controls in either region but in both groups the deletion load was markedly higher in dopaminergic SN neurons than in putamen or frontal cortex (p < 0.01; ANOVA). This data shows that there is a specific susceptibility of dopaminergic SN neurons to accumulate substantial amounts of mtDNA deletions, regardless of the underlying clinical phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available