4.7 Article

Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation

Journal

JOURNAL OF NEUROINFLAMMATION
Volume 10, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1742-2094-10-41

Keywords

Astrocytes; FTY720; Neuroinflammation; Sphingosine-1-phosphate

Funding

  1. Canadian Institute for Health Research (CIHR)/Industry (Novartis) Award
  2. Frederick Banting and Charles Best Canada Graduate Scholarship Master's Award (CIHR)
  3. Neuroinflammation Training Award

Ask authors/readers for more resources

Background: FTY720 (fingolimod, Gilenya (TM)) is a daily oral therapy for multiple sclerosis that readily accesses the central nervous system (CNS). FTY720 is a structural analog to the sphingolipid sphingosine-1-phosphate (S1P) and is a cognate ligand for the S1P G-protein coupled receptors (S1PR). Studies in experimental autoimmune encephalomyelitis using mice with conditionally deleted S1P(1)R from astrocytes indicate that one beneficial effect of FTY720 in this model is via downregulating external receptors, which inhibits responses induced by the natural ligand. Another proposed effect of FTY720 on neuroinflammation is its ability to maintain persistent signaling in cells via internalized S1P(1)R resulting in functional responses that include suppressing intracellular calcium release. We used human fetal astrocytes to investigate potential dual inhibitory-and function-inducing effects of daily FTY720 on responses relevant to neuroinflammation. For the inhibitory effects, we used signaling and proliferation induced by the natural ligand S1P. For the function-inducing responses, we measured inhibition of intracellular calcium release stimulated by the proinflammatory cytokine, interleukin (IL)-1 beta. Methods: Astrocytes derived from human fetal CNS specimens and maintained in dissociated cultures were exposed to 100 nM of the biologically active form of FTY720 over a dosing regimen that ranged from a single exposure (with or without washout after 1 h) to daily exposures up to 5 days. Responses measured include: phosphorylation of extracellular-signal-regulated kinases (pERK1/2) by Western blotting, Ki-67 immunolabeling for cell proliferation, IL-1 beta-induced calcium release by ratiometric fluorescence, and cytokine/chemokine (IL-6, CXCL10) secretions by ELISA. Results: We observed that a single addition of FTY720 inhibited subsequent S1PR ligand-induced pERK1/2 signaling for >24 h. Daily FTY720 treatments (3-5 days) maintained this effect together with a loss of proliferative responses to the natural ligand S1P. Repeated FTY720 dosing concurrently maintained a functional cell response as measured by the inhibition of intracellular calcium release when stimulated by the cytokine IL-1 beta. Recurrent FTY720 treatments did not inhibit serum-or IL-1 beta-induced pERK1/2. The secretions of IL-6 and CXCL10 in response to IL-1 beta were unaffected by FTY720 treatment(s). Conclusion: Our results indicate that daily FTY720 exposures may regulate specific neuroinflammatory responses by desensitizing astrocytes to external S1PR stimuli while sustaining cellular influences that are independent of new surface S1PR activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available