4.5 Article

A Transient Decrease in Spleen Size Following Stroke Corresponds to Splenocyte Release into Systemic Circulation

Journal

JOURNAL OF NEUROIMMUNE PHARMACOLOGY
Volume 7, Issue 4, Pages 1017-1024

Publisher

SPRINGER
DOI: 10.1007/s11481-012-9406-8

Keywords

Brain ischemia; Monocytes; Tcells; Natural killer cells; MCAO

Funding

  1. National Institutes of Health [RO1 NS052839]

Ask authors/readers for more resources

The splenic response to stroke is a proinflammatory reaction to ischemic injury resulting in expanded neurodegeneration. Splenectomy reduces neural injury in rodent models of hemorrhagic and ischemic stroke, however the exact nature of this response has yet to be fully understood. This study examines the migration of splenocytes after brain ischemia utilizing carboxyfluorescein diacetate succinimidyl ester (CFSE) to label them in vivo. The spleen was found to significantly decrease in size from 24 to 48 h following middle cerebral artery occlusion (MCAO) in rats compared to sham operated controls. By 96 h post-MCAO the spleen size returned to levels not different from sham operated rats. To track splenocyte migration following MCAO, spleens were injected with CFSE to label cells. CFSE positive cell numbers were significantly reduced in the 48 h MCAO group versus 48 h sham and CFSE labeled cells were equivalent in 96 h MCAO and sham groups. A significant increase of labeled lymphocyte, monocytes, and neutrophils was detected in the blood at 48 h post-MCAO when compared to the other groups. CFSE labeled cells migrated to the brain following MCAO but appear to remain within the vasculature. These cells were identified as natural killer cells (NK) and monocytes at 48 h and at 96 h post-MCAO NK cells, T cells and monocytes. After ischemic injury, splenocytes enter into systemic circulation and migrate to the brain exacerbating neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available