4.2 Article

Combined 17β-Oestradiol and Progesterone Treatment Prevents Neuronal Cell Injury in Cortical but not Midbrain Neurones or Neuroblastoma Cells

Journal

JOURNAL OF NEUROENDOCRINOLOGY
Volume 21, Issue 10, Pages 841-849

Publisher

WILEY
DOI: 10.1111/j.1365-2826.2009.01903.x

Keywords

oestrogen; progesterone; middle cerebral artery occlusion; neuroprotection; cortex

Funding

  1. START-Program (MK) of the Faculty of Medicine
  2. RWTH Aachen University
  3. B. Braun Melsungen AG, Germany

Ask authors/readers for more resources

Oestrogens are powerful endogenous and exogenous neuroprotective hormones in animal models of brain injury, including focal cerebral ischaemia. This protective effect has been demonstrated under a variety of different treatments and injury paradigms, such as in vivo and in vitro stroke conditions. Neuroprotection in the central nervous system by progesterone is less defined. In the present study, cultured cortical and midbrain mouse neurones and human neuroblastoma cells (SH-SY5Y) were exposed to combined glucose-serum deprivation (CGSD), which is regarded as a reliable model mimicking the effects of ischaemia in vitro. Cell viability was assayed using lactate dehydrogenase release and metabolic activity. Conditions for CGSD treatment were chosen to yield half-maximal cell death rates. The validity of CGSD in vitro was compared with permanent middle cerebral artery occlusion (MCAO) in vivo. CGSD for 4 h induced half-maximal neuronal cell death. MCAO in vivo for the same period resulted in significant neuronal loss, also suggesting the validity of CGSD as a suitable stroke-like in vitro model. Combined steroid treatment (17 beta-oestradiol and progesterone) but not the application of single steroids abolished CGSD-induced cell death of cortical neurones in vitro. By contrast, no cell protection was found in midbrain neurones or neuroblastoma cells. The co-application of oestrogen (ICI 182,780) or progesterone (RU-486) receptor antagonists did not obviously counteract the protective steroid effects. This suggests the operation of nonclassical steroid mechanisms and their implication in mediation of hormonal effects. The surplus of combined protective hormonal effects might be a result of the observed influence of progesterone application on neuronal oestradiol synthesis. The data obtained in the present study clearly highlight the potential of a combined steroid treatment under toxic degenerative brain pathologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available