4.5 Article

The identification of N-glycosylated residues of the human 5-HT3B receptor subunit: importance for cell membrane expression

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 116, Issue 6, Pages 975-983

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2010.07129.x

Keywords

5-hydroxytryptamine; ligand-gated ion channel; post-translational modification

Funding

  1. University of Birmingham Medical School

Ask authors/readers for more resources

P>The 5-hydroxytryptamine 3 (5-HT3) receptor is a pentameric ligand-gated ion channel with potential molecular isoforms arising from different subunit combinations and/or different post-translational modifications of the individual subunits. Since N-glycosylation of the 5-HT3A subunit impacts cell surface trafficking, the presence of N-glycosylation of the human (h) 5-HT3B subunit and the influence upon cell membrane expression was investigated. Following transient expression of the h5-HT3B subunit by human embryonic kidney cells (HEK293 cells) stably expressing the h5-HT3A subunit, the N-glycosylation inhibitor tunicamycin reduced the size of the predominant h5-HT3B-immunoreactive protein (similar to 55 kDa reduced to similar to 40 kDa). Disruption of each consensus N-glycosylation sequences in the h5-HT3B subunit (N31S, N75S, N117S, N147S and N182S) resulted in a reduced molecular weight (by similar to 2-4 kDa) of each mutant when expressed by HEK293 cells stably expressing the h5-HT3A subunit. Immunocytochemical studies demonstrated that disruption of each of the N-glycosylation sequences (individually or combined) reduced the expression of the mutant h5-HT3B subunit protein in the cell membrane when co-expressed with the h5-HT3A subunit. The present study has identified utilised N-glycosylation sites of the h5-HT3B subunit and demonstrated that they promote subunit expression in the cell membrane; a prerequisite for 5-HT3 receptor function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available