4.5 Article

Role of oxidative stress and caspase 3 in CD47-mediated neuronal cell death

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 108, Issue 2, Pages 430-436

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2008.05777.x

Keywords

caspase 3; CD47; cell death; reactive oxygen species; thrombospondin

Funding

  1. [R01-NS37074]
  2. [R01-NS48422]
  3. [R01-NS53560]
  4. [P50-NS10828]
  5. [P01-NS55104]
  6. [R01-AI064569]
  7. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI064569] Funding Source: NIH RePORTER
  8. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS056458, P01NS055104, R01NS037074, R01NS053560, P50NS010828, R01NS048422] Funding Source: NIH RePORTER

Ask authors/readers for more resources

CD47 or integrin-associated protein promotes cell death in blood and tumor cells. Recently, CD47 signaling has been identified in neurons as well. In this study, we investigated the role of CD47 in neuronal cell death. Exposure of primary mouse cortical neurons to the CD47 ligand thrombospondin-1 or the specific CD47-activating peptide 4N1K induced cell death. Activation of CD47 elevated levels of active caspase 3 and increased the generation of reactive oxygen species (ROS) in a time-dependent manner. Both ROS scavengers and caspase inhibitors attenuated cell death. But ROS scavenging did not reduce the activation of caspase 3, and combination treatments with a caspase inhibitor plus free radical scavenger did not yield additive protection. Taken together, these data suggest that parallel and redundant pathways of oxidative stress and caspase-mediated cell death are involved. We conclude that CD47 mediates neuronal cell death through caspase-dependent and caspase-independent pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available