4.5 Article

Brain-derived neurotrophic factor enhances depolarization-evoked glutamate release in cultured cortical neurons

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 79, Issue 3, Pages 522-530

Publisher

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1471-4159.2001.00591.x

Keywords

exocytosis; intracellular Ca2+; neurotrophin; synaptic plasticity

Ask authors/readers for more resources

Brain-derived neurotrophic factor (BDNF) has been reported to play an important role in neuronal plasticity. In this study, we examined the effect of BDNF on an activity-dependent synaptic function in an acute phase. First, we found that shortterm treatment (10 min) with BDNF enhanced depolarization-evoked glutamate release in cultured cortical neurons. The enhancement diminished gradually according to the length of BDNF treatment. The BDNF-enhanced release did not require the synthesis of protein and mRNA. Both tetanus toxin and bafilomycin abolished the depolarization-evoked glutamate release with or without BDNF, indicating that BDNF acted via an exocytotic pathway. Next, we investigated the effect of BDNF on intracellular Ca2+. BDNF potentiated the increase in intracellular Ca2+ induced by depolarization. The Ca2+ was derived from intracellular stores, because thapsigargin completely inhibited the potentiation. Furthermore, both thapsigargin and xestospongin C inhibited the effect of BDNF. These results suggested that the release of Ca2+ from intracellular stores mediated by the IP3 receptor was involved in the BDNF-enhanced glutamate release, Last, it was revealed that the enhancement of glutamate release by BDNF was dependent on the TrkB-PLC-gamma pathway. These results clearly demonstrate that short-term treatment with BDNF enhances an exocytotic pathway by potentiating the accumulation of intracellular Ca2+ through intracellular stores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available