4.6 Article

Desynchronizing anti-resonance effect of m: n ON-OFF coordinated reset stimulation

Journal

JOURNAL OF NEURAL ENGINEERING
Volume 8, Issue 3, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1741-2560/8/3/036019

Keywords

-

Ask authors/readers for more resources

This computational study is devoted to the optimal parameter calibration for coordinated reset (CR) stimulation, a stimulation technique suggested for an effective desynchronization of pathological neuronal synchronization. We present a detailed study of the parameter space of the CR stimulation method and show that CR stimulation can induce cluster states, desynchronization and oscillation death. The stimulation-induced cluster states (at CR offset) cause the longest desynchronizing post-stimulus transients, which constitute an essential part of the CR stimulation effect. We discover a desynchronization-related anti-resonance response of the stimulated oscillators induced by a periodic ON-OFF CR stimulation protocol with m cycles ON stimulation followed by n cycles OFF stimulation. The undesired collective oscillations are effectively desynchronized if the stimulation is administered at resonant frequencies of the controlled ensemble, which is in complete contrast to the typical effect of the usual periodic forcing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available