4.7 Article

Identification of the Post-Polyketide Synthase Modification Enzymes for Fostriecin Biosynthesis in Streptomyces pulveraceus

Journal

JOURNAL OF NATURAL PRODUCTS
Volume 76, Issue 4, Pages 524-529

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/np300667r

Keywords

-

Funding

  1. National Natural Science Funds for Distinguished Young Scholar [30688003]

Ask authors/readers for more resources

Fostriecin (FST, 1) is a natural product with promising antitumor activity produced by Streptomyces pulveraceus. Its antitumor activity is associated with the selective inhibition of protein phosphatase activities. The biosynthetic gene cluster for FST has recently been cloned and sequenced. To better understand the post-polyketide synthase (PKS) modification steps in the biosynthetic pathway of FST, we constructed and characterized three post-PKS modification gene mutants of fosG, fosK, and fosM by knockout inactivation in S. pulveraceus. As a result, we determined that a fosK-encoded cytochrome P450 monooxygenase is responsible for C-18 hydroxylation, formation of an unsaturated lactone is dependent upon FosM, and the fosG gene product is involved in hydroxylation at C-4 after the action of FosM to yield PD 113,271 from FST. The accumulated analogues from the Delta fosK and Delta fosM mutant strains possessed a malonyl ester moiety that suggested that all the post-PKS modification steps in FST biosynthesis occur with the polyketide chain bearing a malonyl ester at the C-3 position, with formation of the unsaturated six-membered lactone as the last step in FST biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available