4.2 Article

Yb-Doped ZnSe Nanoparticles: Synthesis, Physical Properties and Photocatalytic Activity

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 14, Issue 9, Pages 6950-6956

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2014.8937

Keywords

Nano-Catalyst; Photocatalyst; Decolorization; Optical Properties

Funding

  1. National Research Foundation of South Korea [2011-0014246]

Ask authors/readers for more resources

In this study, Yb-doped ZnSe nanoparticles were synthesized by co-reduction method at 150 degrees C and pH = 12 for 24 h. The obtained materials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Powder XRD patterns indicated that the YbxZn1-xSe crystals (x = 0.00-0.10) are isostructural with ZnSe. SEM and TEM images confirmed doping of Yb3+ into the lattice of ZnSe nanoparticles. The UV-Vis diffuse reflectance characteristics of the Yb-doped ZnSe samples were quite similar to that of the undoped sample and showed a strong photoabsorption at visible light range. The electrical conductivity of Yb-doped ZnSe nanomaterials was higher than pure ZnSe at room temperature, and increased with temperature. The photocatalytic activity of synthesized nanoparticles was investigated by the degradation of Orange II solution under visible light irradiation. It was observed that the color removal efficiency of Yb-doped ZnSe catalyst was much higher than that of pure ZnSe (26.28 and 77.10% after 120 min of treatment for ZnSe and Yb0.06Zn0.94Se, respectively). The results demonstrated the good photocatalytic ability of synthesized nanoparticles under visible light. Also, it was revealed that the decolorization efficiency of Orange II over Yb-doped ZnSe increased with increasing Yb loading up to 6 mol% and then decreased.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available