4.2 Article

Preparation and Characterization of Poly(methyl methacrylate)/Multi-Walled Carbon Nanotube Composites

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 9, Issue 8, Pages 4644-4655

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2009.220

Keywords

Polymer Nanocomposite; Electrical Properties; Thermomechanical Properties; Morphology

Ask authors/readers for more resources

This paper focuses on the preparation and characterization of Poly(methyl methacrylate)/multiwalled carbon nanotube composites through ex-situ and in-situ processes. The extent of dispersion and fracture morphology was studied by TEM, AFM, SEM and FESEM. The increase in conductivity at percolated loading of 2.91 wt% was more for in-situ prepared PMMA/MWNTs nanocomposite as compared to ex-situ prepared nanocomposites. The dielectric constant of pure PMMA was increased from 5 to 72 in the ex-situ prepared PMMA/MWNTs nanocomposites with 4.76 wt% of MWNTs loading. Moreover, for the ex-situ nanocomposites containing 2.91 wt% of MWNTs, the dielectric constant was 15, but in-situ prepared PMMA/MWNTs nanocomposite showed two times increase at same loading of 2.91 wt% of MWNTs. Dielectric constant of PMMA/MWNTs nanocomposites loaded with (<4.76 wt%) of MWNTs remained almost constant with frequency. Dynamic mechanical analysis showed remarkable increase in storage modulus, especially at higher temperatures with 4.76 wt% loading of carbon nanotubes as compared to pure PMMA. The presence of additional peak before T-g indicated that CNTs could be used to wake up secondary relaxations, which were inactive in pure PMMA. Thermogravimetric analysis (TGA) showed that thermal stability of PMMA/MWNTs nanocomposites increased by 45 degrees C (in N-2) and 27 degrees C (in air) at 4.76 wt% of MWNTs as compared to the pure PMMA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available