4.4 Article

Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

Journal

JOURNAL OF NANOPARTICLE RESEARCH
Volume 13, Issue 10, Pages 4681-4689

Publisher

SPRINGER
DOI: 10.1007/s11051-011-0432-x

Keywords

Nanotube; Decorated nanotube; Copper oxide nanoparticle; Nickle catalyst; Electroplating

Ask authors/readers for more resources

Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 A degrees C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O-2 at atmospheric environment, during the CNTs growth, lead to the production of CNTs decorated with about 6 nm Cu2O nanoparticles. We used SEM to study the surface characteristics of Ni catalyst films and characteristic of grown CNTs. Raman spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) revealed the formation of CNTs. The selected area electron diffraction pattern, EDX, and XPS studies show that these CNTs were decorated with Cu2O nanoparticles. This way of fabrication is the easiest and lowest cost method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available