4.2 Review

III-V Nanowires: Synthesis, Property Manipulations, and Device Applications

Journal

JOURNAL OF NANOMATERIALS
Volume 2014, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2014/702859

Keywords

-

Funding

  1. City University of Hong Kong [7002819]
  2. National Natural Science Foundation of China [51202205]

Ask authors/readers for more resources

III-V semiconductor nanowire (NW) materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III-V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III-V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III-VNWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD) technique, and then discuss the physical properties of III-V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III-V NW research field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available