4.2 Article

CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

Journal

JOURNAL OF NANOMATERIALS
Volume 2013, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2013/714853

Keywords

-

Funding

  1. German Research Foundation (DFG)
  2. NTT Basic Research Laboratories
  3. National Institute of Information and Communications Technology (NICT)
  4. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  5. Funding Program for World-leading Innovative Research and Development on Science and Technology (FIRST)

Ask authors/readers for more resources

Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs) have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM) images of the nanocrystals (NCs) sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM) of the peaks indicates a small particle size of the nanocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available