4.2 Article

SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

Journal

JOURNAL OF NANOMATERIALS
Volume 2012, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2012/145406

Keywords

-

Ask authors/readers for more resources

A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm) and film thickness (1300 nm) of the sensing dielectric layer in the capacitor model aid in sensing ethylene at room temperature and eliminate the need for microhotplates used in existing bulk SnO2-resistive sensors. The SnO2-sensing layer is deposited using room temperature dip coating process on flexible polyimide substrates with copper as the top and bottom plates of the capacitor. The capacitive sensor fabricated with SnO2 nanoparticles as the dielectric showed a total decrease in capacitance of 5 pF when ethylene gas concentration was increased from 0 to 100 ppm. A 7 pF decrease in capacitance was achieved by introducing a 10 nm layer of platinum (Pt) and palladium (Pd) alloy deposited on the SnO2 layer. This also improved the response time by 40%, recovery time by 28%, and selectivity of the sensor to ethylene mixed in a CO2 gas environment by 66%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available