4.6 Article Proceedings Paper

Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol

Journal

JOURNAL OF MOLECULAR STRUCTURE
Volume 1018, Issue -, Pages 45-53

Publisher

ELSEVIER
DOI: 10.1016/j.molstruc.2012.02.031

Keywords

Ionic liquid; Hydrogen bonding; Excess properties; Water; Alcohol; Raman spectroscopy

Ask authors/readers for more resources

Intermolecular interactions in mixtures of room-temperature ionic liquids (RTILs) and co-solvents define the properties of the solution. In this work, we study the mixing behavior in the binary systems [EMIM][EtSO4]/water, [EMIM][EtSO4]/methanol and [EMIM][EtSO4]/ethanol, which is governed by a change in the balance of molecular interactions present in neat [EMIM][EtSO4]. The mixing behavior and interactions are investigated at molecular level by means of Raman spectroscopy, and at macroscopic level utilizing excess data taken from the literature. The discussion of the results aims at a distinct interpretation of the spectroscopic data and at identifying the relationships between molecular phenomena and macroscopic behavior. The Raman spectra of the binary systems indicate that the balance of intermolecular interactions in the neat RTIL is dominantly distorted by solute-solvent interactions involving hydrogen atoms (IIHAs). In concert with former studies, the spectroscopic and macroscopic data suggest, that the IIHA include a combination of conventional (red-shifting) and unconventional (blue-shifting) hydrogen bonds. With increasing co-solvent concentration, the interionic bonds become successively weaker and eventually ion-co-solvent interactions even replace those between the RTIL counter ions leading to ion pair dissociation. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available