4.2 Article

Characterization of neutralizing affinity-matured human respiratory syncytial virus F binding antibodies in the sub-picomolar affinity range

Journal

JOURNAL OF MOLECULAR RECOGNITION
Volume 25, Issue 3, Pages 136-146

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jmr.2149

Keywords

HRSV-F; affinity; avidity; monoclonal antibodies; Fab; IgG; minimal biotinylation; Biacore; sensor surface density; kinetic exclusion assay

Ask authors/readers for more resources

In the human adaptation and optimization of a mouse antihuman respiratory syncytial virus neutralizing antibody, affinity assessment was crucial to distinguish among potential candidates and to evaluate whether this correlated with function in vitro and in vivo. This affinity assessment was complicated by the trimeric nature of the antigen target, respiratory syncytial virus F (RSV-F) glycoprotein. In the initial affinity screen, surface plasmon resonance was used to determine the intrinsic binding affinities of anti-RSV-F Fab and immunoglobulin G (IgG) to the extracellular domain of RSV-F. This assessment required minimal biotinylation of the RSV-F protein and design of a capture strategy to minimize avidity effects. Approximately 30 Fabs were selected from three optimization phage display libraries on the basis of an initial ELISA screen. Surface plasmon resonance analysis demonstrated the success of optimization with some candidates from the screened libraries having low picomolar dissociation constants, more than 700-fold tighter than the parental monoclonal antibody (B21M). The affinities of these antibodies were further evaluated by a kinetic exclusion assay, a solution binding technology. One IgG (monoclonal antibody 029) displayed a low picomolar KD comparable with that of motavizumab, an RSV antibody in clinical study. Kinetic exclusion assay showed that two other of the matured IgGs (011 and 019) had sub-picomolar dissociation constants that could not be resolved further. We discuss the relevance of these interaction analysis results in the light of recently published data on the mechanism of F-driven viral fusion during paramyxoviral infection and 101F epitope conservation revealed from the recent crystal structure of RSV-F in the post-fusion state. Copyright (c) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available