4.4 Article

Neuroprotective Effects of NMDA and Group I Metabotropic Glutamate Receptor Antagonists Against Neurodegeneration Induced by Homocysteine in Rat Hippocampus: In Vivo Study

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 50, Issue 3, Pages 551-557

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12031-013-9996-5

Keywords

Homocysteine; NMDA; Metabotropic receptor; Neurodegeneration; Hippocampus

Ask authors/readers for more resources

Homocysteine (Hcy), a neurotoxic amino acid, is a risk factor for neurodegenerative diseases. Previous in vitro studies have demonstrated that group I metabotropic glutamate receptors along with N-methyl-d-aspartic acid (NMDA) receptors participate in acute and chronic aspects of Hcy-induced neuronal damage. In the present study, we examined whether the same mechanism may be involved in homocysteine neurotoxicity in vivo. Memantine, MPEP, and LY367385 were used as NMDA, mGlu5, and mGlu1 antagonists, respectively. Repeated i.c.v injection of Hcy was performed for three consecutive days. Neuronal loss in different zones of the hippocampus was assessed by Nissl, Fluoro-Jade B, and TUNEL staining. Neuronal degeneration was observed in both types of apoptosis and necrosis. All glutamate receptor antagonists, even when given alone, provided some degree of neuroprotection. The degree of protection was dependent on the area of the hippocampus. While memantine was more potent against Hcy-induced apoptosis, the potency of mGluR antagonists in neuronal protection against apoptosis and necrosis was almost equal. No more protection was observed when all three antagonists were used simultaneously. It seems that Fluoro-Jade could be a useful marker of apoptotic cell death. Taken together, results demonstrate that, in vivo, Hcy neurotoxicity is mediated mainly by the NMDA receptors and group I mGluRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available