4.4 Article Proceedings Paper

Inhibitory Effect of PACAP on Caspase Activity in Neuronal Apoptosis: A Better Understanding Towards Therapeutic Applications in Neurodegenerative Diseases

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 36, Issue 1-3, Pages 26-37

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12031-008-9087-1

Keywords

Apoptosis; Caspase; PACAP; Neuroprotection

Ask authors/readers for more resources

Programmed cell death, which is part of the normal development of the central nervous system, is also implicated in various neurodegenerative disorders. Cysteine-dependent aspartate-specific proteases (caspases) play a pivotal role in the cascade of events leading to apoptosis. Many factors that inhibit cell death have now been identified, but the underlying mechanisms are not fully understood. Pituitary adenylate cylase-activating polypeptide (PACAP) has been shown to exert neurotrophic activities during development and to prevent neuronal apoptosis induced by various insults such as ischemia. Most of the neuroprotective effects of PACAP are mediated through the PAC1 receptor. This receptor activates a transduction cascade of second messengers to stimulate Bcl-2 expression, which inhibits cytochrome c release and blocks the activation of caspases. The inhibitory effect of PACAP on the apoptotic cascade suggests that selective, stable, and potent PACAP derivatives could potentially be of therapeutic value for the treatment of post-traumatic and/or chronic neurodegenerative processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available