4.4 Article

Calpain-3-mediated regulation of the Na+-Ca2+ exchanger isoform 3

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 468, Issue 2, Pages 243-255

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-015-1747-8

Keywords

Sodium-calcium exchange; Alternative splicing; Calpain-3; Muscular dystrophy; Muscle fatigue; Exercise

Categories

Funding

  1. Netherlands Organization for Scientific Research (NWO) [911-02-008]
  2. Centre for Systems Biology Research (CSBR) initiative from the NWO [CSBR09/013V]

Ask authors/readers for more resources

Ca2+ disturbances are observed when Ca2+-dependent cysteine proteases malfunction, causing muscle weakness and wasting. For example, loss of calpain-3 (CAPN3) activity leads to limb-girdle muscular dystrophy 2A (LGMD2A). In neuronal excitotoxicity, the cleavage of the Na+-Ca2+ exchanger isoform 3 (NCX3) has been associated with an increase in activity and elevation of the Ca2+ content in the endoplasmic reticulum (ER). Since NCX3 is expressed in skeletal muscle, we evaluated the cleavage of different NCX3 splice variants by CAPN1 and CAPN3. Using Fura-2-based cellular Ca2+ imaging, we showed for the first time that CAPN3 increases NCX3 activity and that only NCX3-AC, the variant predominantly expressed in skeletal muscle, is sensitive to calpain. The silencing of the endogenous CAPN1 and the expression of the inactive form of CAPN3 (C129S CAPN3) confirmed the specificity for CAPN1 and CAPN3. Functional studies revealed that cellular Ca2+ uptake through the reverse mode of NCX3 was significantly increased independently of the mode of activation of the exchanger by either a rise in intracellular Ca2+ ([Ca2+](i)) or Na+ ([Na+](i)). Subsequently, the sensitivity to CAPN1 and CAPN3 could be abrogated by removal of the six residues coded in exon C of NCX3-AC. Additionally, mutation of the Leu-600 and Leu-601 suggested the presence of a cleavage site at Leu-602. The increased Ca2+ uptake of NCX3 might participate in the Ca2+ refilling of the sarcoplasmic reticulum (SR) after the excitation-contraction uncoupling following exercise and therefore be implicated in the impaired reticular Ca2+ storage observed in LGMD2A.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available