4.4 Article

Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide

Journal

JOURNAL OF MOLECULAR MODELING
Volume 19, Issue 6, Pages 2197-2203

Publisher

SPRINGER
DOI: 10.1007/s00894-012-1751-2

Keywords

B3LYP; DFT; Nanotube; Sensor; Theoretical study

Ask authors/readers for more resources

In order to explore a sensor for detection of toxic hydrogen cyanide (HCN) molecules, interaction of pristine and defected Al-rich aluminum nitride nanotubes (AlNNT) with a HCN molecule has been investigated using density functional theory calculations in terms of energetic, geometric, and electronic properties. It has been found that unlike the pristine AlNNT, the Al-rich AlNNT can effectively interact with the HCN molecule so that its conductivity changes upon the exposure to this molecule. The adsorption energies of HCN on the pristine and defected AlNNTs have been calculated to be in the range of -0.16 to -0.62 eV and -1.75 to -2.21 eV, respectively. We believe that creating Al-rich defects may be a good strategy for improving the sensitivity of these tubes toward HCN molecules, which cannot be trapped and detected by the pristine AlNNT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available